
TheCodingMachine

[NOOBS 2023 #2]

Web Architecture
basics & API
Thibault Balmette

Web architecture basics
From client request to server response

SUMMARY

01
DNS
Resolution

02
TCP
Protocol

03
HTTP
Protocol

04
Server
treatment

05
Technologies

01
DNS
RESOLUTION

01 02 03 04 05DNS Resolution

● Translates domain names to the
numerical IP addresses

● Designed for humans
● www.thecodingmachine.com is a

domain name

DOMAIN NAME SYSTEM

01 02 03 04 05DNS Resolution

The Client
 your computer

www.thecodingmachine.com /etc/hosts Root DNS
Server (ISP)

DNS Server
in charge of “.com”

DNS Server in charge of
thecodingmachine.com

FROM CLIENT REQUEST TO SERVER RESPONSE

02
TCP
PROTOCOL

01 02 03 04 05TCP PROTOCOL

THE BASICS OF HTTP AND THE WEB

3 ways handshake

03
HTTP
PROTOCOL

01 02 03 04 05HTTP PROTOCOL

WEB COMMUNICATION

Extension of the TCP protocol

CLIENT
 Your browser

SERVER

Status

HEADERS

Body

[Cmd] [URL] [Version]

HEADERS

Body

01 02 03 04 05HTTP PROTOCOL

REQUEST / RESPONSE EXAMPLE

General information
(URL, method, status…)

Response headers

Request headers

Always keep your “Network” tab open when you are working!
(and don’t forget to filter your XHR requests for example)

01 02 03 04 05HTTP PROTOCOL

THE METHODS

GET / PUT / DELETE / POST

•GET :
Used to get data
The parameters are directly encoded in the URL

•POST / PUT / DELETE

Used to submit data
The parameters are in the body of the request

If the HTTPS protocol is used, the body and the header are encrypted

04
SERVER
TREATMENT

01 02 03 04 05SERVER
TREATMENT

CONNECTION TO THE DATABASE & SESSION MANAGEMENT

APACHE PHP
(example)

Session

Database

05
TECHNOLOGIES

01 02 03 04 05 TECHNOLOGIES

HTML

Less

CSS
Sass

Bootstrap

Front-end (Client)

JS
jQuery

VueJS / NuxtJS

React / Next.js

Angular

Apache + PHP (Symfony, Laravel…)

NodeJS (Express, NestJS…)

Back-end (Server)

DB

COMMON WEB TECHNOLOGIES USED AT TCM

Elasticsearch

Exercice: describe the architecture of your project

MongoDB

MySQL RabbitMQ / SQS

SocketIO

Others

Mailer …

01 02 03 04 05 SUM UP

SUM UP

CLIENT

DNS

SERVER

API
Integration architecture

SUMMARY

01
API

02
REST - Web
service

03
GraphQL

04
OAUTH2

05
POSTMAN

06
PHP - VCR

07
Asynchronous
tasks

01
API

01 02 03 04 05API 06 07

APPLICATION PROGRAMMING INTERFACE

Standardized set of classes, methods or functions that serves a front through which software offers
services to other software.

It is offered by:

● A software library (for example the Geolocation API in JavaScript exposed by
your browser)

● A web service (what interests us here)

It is (usually) bundled with a description (documentation) which specifies how
consumer programs can make use of the functionality of the supplier program.

01 02 03 04 05API 06 07

APPLICATION PROGRAMMING INTERFACE

ABC Salles example

FRONT
abcsalles.com

ADMIN
admin.abcsalles.com

MOBILE

MEDIA
media.abcsalles.com

API
api.abcsalles.com

MySQL

…RabbitMQ

Elasticsearch

MongoDB

02
REST
Web service

01 02 03 04 05RESTFUL API 06 07

DEFINITION

It’s a type of architecture/protocol that uses HTTP and mainly the JSON (or XML) format.

It respects the following constraints:

● Client-Server : The two are separate and can evolve independently.
● Stateless : Each request must contain all the information necessary to

allow the server to understand the request
● Caching possible
● Hierarchical layer system : the application states are identified by

individual resources
● Code on demand (optional)
● Uniform interface : resource identification (URI), resource

manipulation, ...

01 02 03 04 05 06 07RESTFUL API –
Manage resources

URL GET PUT POST DELETE

Collections:
http://api.website.com/x.x/object List objects Replace an entire

collection by another
Add an object to the

collection
Delete the entire

collection

Object:
http://api.website.com/x.x/object/12

Return the
representation

of an object

Update the object or
create it if it does not

exist

Add an element in a
sub collection of an

object (rare)
Delete the object

The goal of a “RESTful API” is to contain the maximum of meaning without needing a
specific (and external) documentation

Exercice: what is the
purpose of this call?

01 02 03 04 05 06 07RESTFUL API –
Exercice

EXERCICE : WHAT IS WRONG WITH THESE METHODS?

1 2

3 4

01 02 03 04 05 06 07RESTFUL API

RETURNED CODES ARE IMPORTANT

AS WELL AS THE HEADERS SENT

• 2XX : Success

o 200 : OK

o 201 : Created

• 5XX : Server Error

o 500 : Internal Error

o 501 : Not Implemented

o 503 : Service Unavailable

• 3XX : Redirection

• 4XX : Client Error

o 400 : Bad Request

o 401 : Unauthorized

o 403 : Forbidden

o 404 : Not found

o 409 : Conflict

• Content-Type : application/json

• Authorization : Bearer 0b79bab50daca910b000d4f1a2b675d604257e42

01 02 03 04 05 06 07

● These web services expose the same functionalities in the form of remotely executable services.

● Their specifications are based on SOAP and WSDL standards.

WS-*

SOAP WSDL
• Object oriented RCP (Remote Procecedure

Call) protocol, build on XML

• Transmission of messages between

remote objects, allows an object to invoke

methods of objects physically located on

another server

• Web Services Description Language is an

XML grammar used to describe a web

services. It contains the definition of objects

(classes) and methods.

SOAP Web Service

01 02 03 04 05 06 07WS-*

Example of a SOAP Web Service using PHP

01 02 03 04 05 06 07REST > WS-*

• The application is easier to maintain because the

client and the server are independent

• Lack of client state management on the server

o No permanent connection

o Distribution of requests on several servers

• Allows caching

• Use of HTTP (header, descriptive return code)

• Universal Element Identification System (URI)

• The client must locally store all the data

necessary for the smooth running of the

application

• Higher bandwidth consumption

ADVANTAGES AND DISADVANTAGES OF THE REST PROTOCOL

03
GRAPHQL

01 02 03 04 05 06 07GraphQL

It is not :

● A new trendy database
● A database query language such as SQL

GraphQL is a challenger for these other protocols :

● REST
● SOAP/WSDL based web services

It is developed by Facebook and was used for the first time in the Facebook API

GraphQL is strongly typed

GRAPHQL IS A PROTOCOL

01 02 03 04 05 06 07GraphQL

Your API changes often
You are developing a new feature but your API does not exactly meet your needs.

For example: you are developing a marketplace. You need a page to display a product, as
well as company information.

REST (under fetching)

WHAT PROBLEM DOES GRAPHQL SOLVE ?

/api/product/42 /api/company/35

01 02 03 04 05 06 07GraphQL

AN ALTERNATIVE (STILL REST)

/api/product/42 (over fetching)

01 02 03 04 05 06 07GraphQL

ANOTHER ALTERNATIVE (STILL REST)

/api/product/42?with_company=true Flags hell 😨!
Probably one flag by API consumer

01 02 03 04 05 06 07GraphQL

The client requests the list of fields they want

GET /graphql?query= single endpoint

the name of the query is “product”

lists of fields requested

01 02 03 04 05 06 07GraphQL

● Another possible query on the same "query" with a different set of fields

GET /graphql?query=

No need to change the server side code!
All data is in one API call!

● GraphQL can also make mutations (to change the state of the DB)
Cf. GraphQLite presentation!

https://drive.google.com/open?id=0B33pp5vqFdJhN3hJQmxZZDZwX00

https://drive.google.com/open?id=0B33pp5vqFdJhN3hJQmxZZDZwX00

04
OAUTH2

01 02 03 04 05 06 07OAUTH2

ABSTRACT PROTOCOL FLOW

APPLICATION
(Client)

USER
(Resource Owner)

Authorization
Server

Resource
Server

1. Authorization Request

2. Authorization Grant

3. Authorization Grant

4. Access Token

5. Access Token

6. Protected Resource

05
POSTMAN

01 02 03 04 05 06 07POSTMAN

Postman is a software that can be used to test API
(especially REST but also GraphQL). It is very easy to use.

06
PHP - VCR

01 02 03 04 05 06 07PHP - VCR

● My project interfaces with third-party systems
API calls
WS calls

…
● I need a stable environment to test

And

● I always need to get the same results when I request for my integration tests

But …

I don't have control over the API

THE NEED

01 02 03 04 05 06 07PHP - VCR

Create an API “mock”

TOO LONG!

POSSIBLE SOLUTION :

01 02 03 04 05 06 07PHP - VCR

PHP-VCR!

A PHP package that we install in the project.

composer require --dev phpvcr/phpvcr

PHP-VCR records the requests made, and is able to replay them.
GitHub : https://github.com/php-vcr/php-vcr

THE SOLUTION

https://github.com/php-vcr/php-vcr

01 02 03 04 05 06 07PHP - VCR

Note: PHP-VCR can « hijack » any call that uses curl, http sockets or SoapClient!

IN PRACTICE : 1ST RUN

My PHP
code

Performs a query to
http://foo.com/bar?baz=42

PHP-VCR

foo.com

Do I have this request
in my « cassette »? No!

Ok then, let’s perform
the request

01 02 03 04 05 06 07PHP - VCR

IN PRACTICE : 1ST RUN

My PHP
code

PHP-VCR

foo.com

Store the response
in the cassette

Let’s get the responseReturns the response

01 02 03 04 05 06 07PHP - VCR

IN PRACTICE : 2ST RUN

My PHP
code

Performs a query to
http://foo.com/bar?baz=42

PHP-VCR

foo.com

Do I have this request
in my « cassette »? Yes!

Returns the response

01 02 03 04 05 06 07PHP - VCR

Start PHP-VCR:

Stop PHP-VCR (write the cassette):

USAGE

07
ASYNCHRONOUS
TASKS

01 02 03 04 05 06 07 ASYNCHRONOUS
TASKS

● Script allowing to carry out important / expensive treatments
○ Importing data
○ Updating data across the whole database

● Planning with CRON
● PHP : Symfony Console / Mouf Console and different configuration (php.ini)

W A R N I N G
● VOLUMETRY
● MEMORY CONSUMPTION / RUN TIME
● RESUME ON ERROR
● REPORTING OF EACH COMMAND

BATCH

01 02 03 04 05 06 07 ASYNCHRONOUS
TASKS

RABBITMQ

RabbitMQ is a message broker based on the AMQP standard in order to communicate with different
customers.

It allows for example to:
● Deport the execution of a task asynchronously (ex: send mail, upload file,

delete cache...)

● Perform a task in several specific services (Publish/Subscribe)

● Manage errors and downtime

When working with AWS stack: SQS (Simple Queue Service)

01 02 03 04 05 06 07 ASYNCHRONOUS
TASKS

Work queue:

P

Publish/Subscribe:

Routing:

C1

C2 P
C1

C2

amq.gen-RQ6…

X

amq.gen-As8…

P X

type=direct
error

amqp.gen-S9b…

amq.gen-Ag1…

C1

C2
warning

info
error

P : Producer
C : Consumer
X : Exchange

01 02 03 04 05 06 07 ASYNCHRONOUS
TASKS

RABBITMQ: THE MANAGEMENT INTERFACE

01 02 03 04 05 06 07 SUM UP

SUM UP

● There isn’t a typical web architecture, each application has its own requirements and its own

specificities

● APIs are the core of any application (especially the growing ones) : REST is the most common one.

More modern protocols exist : GraphQL, gRPC…

● Many tools exist to ease the development of web services

● In order to handle heavy treatments asynchronously, a queue service (RabbitMQ/SQS) can be set up

At TCM, we work with every technology described in this presentation (and many others !)

Any questions?

Thibault Balmette
t.balmette@thecodingmachine.com

contact@thecodingmachine.com
www.thecodingmachine.com

TheCodingMachine
56 rue de Londres - 75008 - Paris

Thank you!

56 rue de Londres
75008 Paris

35 Rue de Marseille
69007 LYON

Rua da Palma, 219, 3ºEsq
1100-391 Lisboa

20/F, Tower 535
Causeway Bay, Hong Kong

Spécialisée depuis 2005 dans le développement Open Source, nous assurons l’ensemble des
projets qui sont au cœur de votre stratégie digitale.

Nous intervenons depuis la mise en place jusqu’à la livraison (et même au-delà)
en nous adaptant à vos besoins que ce soit en mode Agile ou au Forfait.

