

TheCodingMachine

Point du vendredi – 16 sept. 2022

Cache pattern

MIO@TheCodingMachine

You will no longer say "clear the cache"
in a small hint of shame.

02
Good way

01
Wrong way

Table of contents

03
Some tips

01
WRONG WAY

01 02 03WRONG WAY

Store cache

On any data
changes

Set cache data
request

You may set the cache multiple time
before you will need to fetch it

End

If you have a partial data, you may need
to recreate the full dataset before to be
able to cache it.
It's obvious but did you think of all related changes ?

Parameters :
❏ cache key (like 'company_$id')
❏ expire time to random value

Above all, it's not the role of any
update method to cache informations
(it is a code smelt)

Cf. to next screen (fetch datas)

01 02 03WRONG WAY

Fetch

Request data
by an id

Return data

Parameters :
❏ cache key (like 'company_$id')

Data in
cache ?

Load data from
datasource

NO

YES

❏ In any update of structure of data, you will
need a full cache clear and application will
need to rebuild all.

❏ You will have outdated value the most of the
time (because of random expire time, but it’s
not related to an action)

❏ You can’t trust your cached data so you will
place some parameters to allow to fetch datas
without cache (it’s bad because if you don’t use
cache for some part of application, you lose all
advantages of it).

❏ Here you may store data to the cache but you
may need for that to duplicate code for cache
storage (and the most of time, you forget this
part)

02
GOOD WAY

01 02 03GOOD WAY

Fetch cached

❏ With “tags” you can link your cached data to
many entities. It’s useful for invalidation.
So tags a lot : one tag for company, one for
each sub companies, etc.

❏ Expire time will be only used to clear unused
information from cache storage

Request data
by an id

Return data

Parameters :
❏ cache key with version (like

'company_$id_v1')

Data in
cache ?

Load data from
datasource

NO

YES

❏ In any update of structure of data, you don’t
need to invalidate cache, next request will
automatically request for 'company_$id_v2'

❏ Optional part useful if your cached information
contain recursives datas, or data who can be
recomputed at each request (on your concrete
class of entity, you can implement serialisable)

Denormalize / Normalize

Do not cache too much ! A request to cache
storage take time ! With too much you may
have a slower application.

Save to cache

Parameters :
❏ cache key with version
❏ cache tags list
❏ very long expire time (30 days)

01 02 03GOOD WAY

Invalidate

On any data
changes

Find all related
entities

For each, just
invalidate the TAG

❏ You can implement it as event on your ORM for all entities (you
don’t need to know if there is cache feature for them)

❏ Do not forget DELETE
❏ You may need also to invalidate for CREATE (for systems where id is

provided by another systems : email per example). It’s a security.

❏ For each entities generate all related tag you may use on your
application.

❏ A tag factory will help you to centralise all onto complex systems.

❏ Do not invalidate key, invalidate only TAG. With this way, you will
invalidate all cached data related to an entity. Per exemple a
company with some related subcompagnies, if a subcompany
change, the root company related cache may change too.

If you need to be very comfortable, you can
execute it on a transaction mode (if
invalidation fail, rollback changes)

01 02 03GOOD WAY

Cache prefetching (optional)

By any job
feature

Fetch maximum
amount of data in

one call

For each, apply
cache storage

❏ You may use cronjob, consumer, event consumer, manual call,
command line during deployment…

❏ Just avoid to do that during the real processes : this task have to be
executed in background mode.

❏ If any call to the application request a data who are not yet prefetch,
it’s not a trouble (there will be cached by this request).

❏ Any call to an external source (like sql server) require some time to
execute. If you make one call for multiple datas, you avoid that.

❏ But… paginate results : you have to balance between speed and
memory limit of your process.

❏ To apply cache storage, you may same method as you use for the
regular way (you just need to split you getter in two parts).

Prefetching is not a standard requirement.
You may use it to speed up the first load…
but your server will load lot of unrequired
data (use that only for specifics cases or if
fetch lot of information in same request is
very faster than request one by one).

03
SOME TIPS

01 02 03 SOME TIPS

Security implications

❏ Becareful about “context” : some informations are generated for only some publics. In this
case, add a suffix in the key (about something related the right/role) or do not cache
confidentials informations (remove/add them during normalisation/denormalisation).

❏ In local cache (like browser cache), you may store some confidentials information… but a
local computer can be lost or stolen…

❏ A cache server may have also security breach. So if you expose some very confidentials
informations, please double check security of cache storage (redis, memcache, file, etc). Lot
of security breach are linked to memory overflow or request forgery in cache server.

It’s very difficult to be in security with caching feature… but it’s your job !

01 02 03 SOME TIPS

What datas to cache

❏ Save request who need lot of time to return (per example from an external service or very
complex SQL request).

❏ Request called very often (something you need everywhere, something you need to share
for lot of user in same time…)

❏ To make an information immutable for a while : per example an exchange rate (to have the
same rate for one hour).

01 02 03 SOME TIPS

Where to store the cache

❏ Filesystem or memory : but in these case, you cache is not stateless.
❏ Redis, memcache, etc : the most used way (very easy to manage)
❏ In your SQL database : it’s named denormalization because the a “good” should not have

any information who can be calculate from others tables… but perfectionism can be
counter-productive (in a e-commerce application, it’s easier to have all order total in
database than recalculate each amount row by row).

❏ Semaphores : it’s allow to share the same memory pointer for multiple processes. It’s used
the most of the time for lock feature and it’s not stateless (but very efficient if your
information change very fast and are used by multiple processes in same time).

❏ In static variable in php : it’s not very useful but it’s very easy to implement. But each request
will drop them (it’s just a global variable).

01 02 03 SOME TIPS

Cache and dev env

In dev environment :
❏ In dev environment, you can have a variable to disable cache for a temporary debug. But

you should use cache even during development.
❏ Clear the cache after each switch branches / reload fixtures.
❏ For unit test, do not forget to clear them in setUp.

In staging environment :
❏ Staging is just another production environment with fake data.
❏ You should never clear the cache : if you need it, you made a mistake during implementation

and the production will have the same trouble.

01 02 03 SOME TIPS

How to manage remote information

When an information is provided by an external source, you may have difficulties to invalidate the
cache. Some possibilities :
❏ Manage a webhook : an API call from external source to your application to invalidate
❏ Create a key based on remote information easiest to fetch. Per example, make a call to have

a checksum of informations and make the call(s) to have the full information only if this
checksum is not stored on your cached data.

❏ Manage a cron task who will fetch all changes from a last call an invalidate information for
each changes (but with this method, you cached data can be outdated from the last call to
the endpoint to fetch changes : so please inform user in UI about date of last update).

❏ Then… if you can’t do anything to have an invalidation managed by the remote system…
you can’t do anything valid for caching. If it’s not too sensible, just take in account that your
information IS outdated (if it may, it is).

01 02 03 SOME TIPS

Docs

❏ https://symfony.com/doc/current/components/cache.html#basic-usage-psr-6
❏ https://laravel.com/docs/8.x/cache
❏ https://developer.wordpress.org/reference/classes/wp_object_cache/ (not very usefull :

please customize it)

https://symfony.com/doc/current/components/cache.html#basic-usage-psr-6
https://laravel.com/docs/8.x/cache
https://developer.wordpress.org/reference/classes/wp_object_cache/

Merci !
Xie xie !

Obrigado !

Merci à Pauline qui avait préparé le template pour cette présentation il y a quelques mois !

01 02 03Section title

Template

start 12pt

step 12pt

❏ text 1 … 10pt
❏ text 2 …
❏ text 3 …

end 12pt

Comment … 10pt

Parameters :
❏ … 10pt
❏ …

Description… 12pt

Cf. … 10pt

Condition
10pt

Condition
10pt

step 14pt
optional 10pt

other step 12ptother step 12pt

