
Point du vendredi

31/03/2023

Web Security
(2023 edition)
THB

“60% of small companies go out of business within six months of falling victim to
a data breach or cyber attack.” (Cisco / National Center for the Middle Market, 2017)

Introduction

• Security is a cornerstone of every project… but it
isn’t the main focus of our projects

• This presentation will summarize the goals of
security handling of our projects and give you tips
and tools to apprehend this whatever your
experience is

02
Back to
basics

01
What? When?
Where?

SOMMAIRE

03
Advanced
access control

04
Challenge your
security

05
Feedback

06
Horror Stories

01
What, When, Where ?

01 02 03 04 05 06What? When?
Where?

• Web application security is the process of protecting every
aspect of a website : its functionalities, its data, its files and even
its source code

• “Security” implies “reliability”!

What?

01 02 03 04 05 06What? When?
Where?

• Whenever. Wherever. Period.
• No project can afford to neglect security implementation
• You should always question your client or yourself about the

way this feature, this data etc. is available or not

“Which kind of users can do that?”
“When should this action be possible or not?”

“Should this document be accessible when I’m not logged in?”

When? Where?

01 02 03 04 05 06What? When?
Where?

“But, I don’t have a budget for this!”
“But, I don’t have time for that!”

But...

01 02 03 04 05 06What? When?
Where?

• Security developments will cost you less time (and less money) if
implemented directly at the beginning of your developments

• As it may impact your data model, the security of your
application should be considered as soon as your developments
start.

There is not ”but” with security

01 02 03 04 05 06What? When?
Where?

There is not “later“ with security

• “I’ll do this later” means that you probably won’t do it (or won’t
do it correctly)

• Your security handling must be seen as a ‘standard’ when
working on your project (especially when working with multiple
people)

02
Back to basics

Back to basics

01 02 03 04 05 06Back to
basics

• Hard to identify what the “basics” of
security are (what is mandatory,
what is optional), especially when
everyone at any level is concerned

• Is there a list of risks to start with?

OWASP TOP 10

01 02 03 04 05 06Back to
basics

• Open Web Application Security Project
• Online community that has been delivering tools and methodologies

regarding web app security since 2003

• Its “Top 10” identify the most critical risks facing organizations
• Data collected frequently : 2017, 2021…

“A good first step toward more secure coding”

https://owasp.org/www-project-top-ten/

Code Risk Comment

A1:2021 Broken access control Incorrect enforced restrictions on what authenticated users are allowed to do

A2:2021 Cryptographic failures Data that requires special precautions when exchanged with the browser

A3:2021 Injection Injection flaws, such as SQL, NoSQL, OS, and LDAP injection

A4:2021 Insecure design Flaws created by the design of the architecture, of the project

A5:2021 Security misconfiguration Insecure or incomplete default configurations, misconfigured HTTP headers...

A6:2021 Vulnerable and Outdated components Vulnerable libraries, frameworks and modules

A7:2021 Identification and Authentication failures Incorrect authentication and session management implementation

A8:2021 Software and Data integrity failures Deserialization that leads to remote code execution

A9:2021 Security logging and monitoring failures Allows attackers to further attack system

A10:2021 Server-side request forgery (SSRF) Get around firewall and allows scan of server (e.g)

OWASP TOP 10: 2021 EDITION

01 02 03 04 05 06Back to
basics

A1:2021 - BROKEN ACCESS CONTROL

01 02 03OWASP TOP 10

Vulnerability:

• Bypassing access control checks by modifying the URL, the HTML, or using a API tool.
• Elevation of privilege: access to something without having the requirements

How to prevent it:

• With the exception of public resources, deny by default.
• Unique application business limit requirements should be implemented specifically
• Disable web server directory listing and ensure file metadata (e.g. .git) and backup files are not

present within web roots.
• Log repeated access control failures, alert admins when appropriate.

Why it was #1 in 2021: most of the applications tested had at least one occurence of Common
Weakness Enumerations (CWEs) including CWE-200: Exposure of Sensitive Information to an
Unauthorized Actor, CWE-201: Exposure of Sensitive Information Through Sent Data, and CWE-352:
Cross-Site Request Forgery (318k occurrences)

Real life examples: Snapchat (2013) ; Facebook Business (2015) : possibility to assign admin
permissions to himself

03 04 05 06

A2:2021 - CRYPTOGRAPHIC FAILURES

01 02 03OWASP TOP 10

Vulnerability:

• Hosting of sensitive data (passwords, credit card numbers, health records...) that is not
protected as it should be: accessible by the client, unencrypted etc.

• This data falls under privacy laws, e.g. EU’s General Data Protection Regulation (GDPR)

How to prevent it:

• Classify data processed by the application. Identify which data is sensitive according to
privacy laws or business needs.

• Don’t store sensitive data unnecessarily. Discard it as soon as possible.
• Encrypt all data in transit with secure protocols such as TLS. Enforce encryption using

directives like HTTP Strict Transport Security (HSTS).
• Disable caching for response that contains sensitive data.

Previously known as A3:2017 - Sensitive Data Exposure (233k occurrences) : CWE-259: Use of
Hard-coded Password, CWE-327: Broken or Risky Crypto Algorithm

Real life example : Cloudbleed (Cloudflare, 2017) : ability to dump memory of Cloudflare servers,
containing sensitive data, some of which were cached by search engines (the bug was triggered
1,242,071 times but 0 passwords, credit cards or health records were exposed according to
Cloudflare)

03 04 05 06

A3:2021 - INJECTION

01 02 03OWASP TOP 10

XKDC - Exploits of a Mom

Vulnerability:

• User-supplied data is not validated, filtered, or sanitized
by the application

• SQL injection is the most common injection but there can
also be LDAP and OS command injections

How to prevent it:

• Use ORM (correctly!)
• Use positive or “whitelist” server-side input validation.
• For any residual dynamic queries, escape special

characters

Includes CWE-89: SQL Injection, CWE-73: External Control of File
Name or Path (274k occurrences) (now includes CWE-79:
Cross-site Scripting too)

Real life example : The Panama Papers (11.5 million records
from Mossack Fonseca regarding financial dealings, 2016) : SQL
injection flaw in their Drupal website

03 04 05 06

A4:2021 - INSECURE DESIGN

01 02 03OWASP TOP 10

Vulnerability:

• Design and architectural flaws : by design, a vulnerability is exposed
• Presence of an insecure process : credential recovery workflow using “questions

and answers” (multiple people can know the answers)
• Error message with sensitive information

How to prevent it:

• Validate your architecture choice by a professional
• Challenge unusual requests made during the conception
• Use library of secure design patterns
• Integrate plausibility checks at each tier of your application (from frontend to

backend)

Includes CWE-209: Generation of Error Message Containing Sensitive Information, CWE-256:
Unprotected Storage of Credentials, CWE-501: Trust Boundary Violation, and CWE-522:
Insufficiently Protected Credentials (262k occurrences)

Real life example : Scalpers bots able to purchase entire stocks of GPUs on many
e-commerce sites

03 04 05 06

A5:2021 - SECURITY MISCONFIGURATION

01 02 03OWASP TOP 10

Vulnerability:

• Missing appropriate security hardening across part of the application stack or external
services (e.g. Amazon S3...)

• Unnecessary features are enabled or installed (e.g. unnecessary ports, services, pages,
accounts, or privileges).

• Default accounts and their passwords still enabled and unchanged.
• Error handling reveals stack traces or other overly informative error messages to

users.

How to prevent it:

• Continuous Deployment (CD) to minimize the effort: Development, QA, and production
environments configured identically, with different (and strong) credentials.

• Remove or do not install unused features, frameworks or packages.

Includes CWE-16 Configuration and CWE-526 Exposure of Sensitive Information Through
Environmental Variables (208k occurrences)

Real life example: Accenture (2017): Authentication information as well as sensitive
customer information hosted in a public Amazon S3 bucket

03 04 05 06

A6:2021 - VULNERABLE AND OUTDATED COMPONENTS

01 02 03OWASP TOP 10

Vulnerability:

• Bad knowledge of the versions of all components you use (both client-side and server-side, directly or nested
ones)

• Vulnerable, unsupported, or out of date software: OS, web server, database management system, APIs and
libraries

• If you do not scan for vulnerabilities regularly
• If software developers do not test the compatibility of updated, upgraded, or patched libraries

How to prevent it:
• composer update, yarn upgrade (don’t be afraid!)
• yarn audit and SecurityAdvisories that checks for vulnerable components
• Remove unused dependencies and components
• Only obtain components from official sources to reduce the chance of including a malicious component (check number of issues, of stars,

date of the latest commit and release, etc. on GitHub)
• Add Dependabot: continuously update the versions of both client-side and server-side components (ask Guillaume !)
• Subscribe to email alerts for security vulnerabilities related to components you use

Includes CWE-1104: Use of Unmaintained Third-Party Components

Real life example: Log4j (open-source library used by major online service providers, 2021) : possibility to execute arbitrary
Java code on a server

03 04 05 06

https://github.com/Roave/SecurityAdvisories
https://dependabot.com/

A7:2021 - IDENTIFICATION AND AUTHENTICATION FAILURES

01 02 03OWASP TOP 10

Vulnerability:

• The authentication process can be brute forced (allow weak passwords)
• Weak credential recovery and forgot-password processes

How to prevent it:

• Do not ship with any default credentials
• Implement weak-password checks, such as testing new or changed passwords against a list of the top

10000 worst passwords.
• Limit or increasingly delay failed login attempts. Log all failures and alert administrators when attacks

are detected.
• Ensure registration and credential recovery are hardened against account enumeration attacks by

using the same messages for all outcomes.
• Where possible, implement multi-factor authentication (MFA) to prevent automated attacks.

Was previously #2 in 2017 (known as A2:20217 - Broken Authentication) : risks are mitigated thanks
to the use of standardized frameworks that includes protections against these vulnerabilities.

Includes CWE-297: Improper Validation of Certificate with Host Mismatch, CWE-287: Improper
Authentication and CWE-384: Session Fixation (132k occurrences)

Real life example: Department of Revenue (2012) : default password set in the authentication layer,
387 000 credit card numbers and 3.6 million Social Security numbers stolen

03 04 05 06

https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://github.com/danielmiessler/SecLists/tree/master/Passwords

A8:2021 - SOFTWARE AND DATA INTEGRITY FAILURES

01 02 03OWASP TOP 10

Vulnerability:

• The application relies upon plugins or libraries from untrusted sources, repositories and content
delivery networks

• Insecure deserialization

How to prevent it:

• Ensure libraries and dependencies are consuming trusted
repositories

• Ensure that there is a review process for code configuration
changes

• Ensure the integrity of the code flowing through the build and
deploy processues using CI / CD pipeline

New category : includes CWE-829: Inclusion of Functionality from Untrusted Control Sphere,
CWE-494: Download of Code Without Integrity Check and CWE-502: Deserialization of Untrusted
Data

Real life example : SolarWinds (2020) : compromised updates sent to IT ressources of
numerous companies and government agencies such as the Pentagon

03 04 05 06

01 02 03OWASP TOP 10

Vulnerability:

• Auditable events, such as logins, failed logins, and high-value transactions are not
logged.

• Errors generate no (or unclear) log messages.
• Logs of applications and APIs are not monitored for suspicious activity.

How to prevent it:

• Ensure all login, access control failures, and server-side input validation failures can be
logged with sufficient user context to identify suspicious accounts

• Establish effective monitoring and alerting such that suspicious activities are detected
and responded in a short time.

• Handling error like a pro (by @DAN)

A9:2021 - SECURITY LOGGING AND MONITORING FAILURES

Includes CWE-117 Improper Output Neutralization for Logs, CWE-223 Omission of Security-relevant
Information, and CWE-532 Insertion of Sensitive Information into Log File.

03 04 05 06

https://drive.google.com/file/d/19jgXWKKoACjFNmeGnxYDj1dkUdOeoKlF/view?usp=sharing

A10:2021 - SERVER-SIDE REQUEST FORGERY (SSRF)

01 02 03OWASP TOP 10

Vulnerability:

• A given URL is loaded without whitelisting
• Your server exposed internal structure and content
• A 3rd party can send request on behalf of a server

How to prevent it:

• Segment resource in separate networks
• Enforce “deny by default” firewall policies to block all

but essential intranet traffic
• Sanitize and validate all client-supplied input data
• Enforce the URL schema, port, and destination with a

positive allow list
• Do not send raw responses to clients

The website “loads” a
given URL in order to
display a thumbnail of
the websiteNew category which appears because of an increasing risk

linked to this problem

03 04 05 06

OTHER RISKS THAT YOU NEED TO KEEP IN MIND

01 02 03OWASP TOP 10

Code Quality issues

• Code quality issues include known security defects or patterns, reusing variables for multiple purposes, exposure of sensitive
information in debugging output

• Solution (e.g.): use (and configure correctly) a static code analysis tool

Denial of Service

• Always possible given sufficient resources
• Anyone with the link can access a large file, or a computationally expensive transaction occurs on every page
• Solution: Performance test code, monitor memory usage, re-architect, optimize, or cache expensive operations, add access controls for

larger objects to ensure that only authorized individuals can access huge files

Memory Management Errors

• The languages we use everyday are written in systems languages that have memory management issues
• Solution: use memory-safe languages such as Rust or Go, update to newer versions of PHP for example. For existing code, use of strict

compiler flags, strong typing, static code analysis to identify memory leaks, memory, and array overruns, and more.

These items didn’t make the cut in OWASP Top 10 but are well worth the effort to identify and remediate.

03
Advanced access control

01 02 03 04 05 06Advanced
access control

Access control determines whether the user is allowed to
carry out the action that they are attempting to perform.

3 different types of access control exist:
• Vertical access control
• Horizontal access control
• Context-dependent access control

(perform the actions in a wrong order)

Advanced access control

01 02 03 04 05 06Advanced
Access Control

• Vertical access controls are mechanisms that
restrict access to sensitive functionality that is
not available to other types of users.

• For example, an administrator might be able to
modify or delete any user's account, while an
ordinary user has no access to these actions.

Vertical access control: definition

01 02 03 04 05 06Advanced
Access Control

Use annotation @Security (with method “hasRight” / “hasRole” for example):
• Sensio\Bundle\FrameworkExtraBundle\Configuration\Security; (REST controllers)

• TheCodingMachine\GraphQLite\Annotations\Security; (GraphQLite controllers)

• TheCodingMachine\GraphQLite\Annotations\Right(‘ROLE_MYROLE’); (GraphQLite)

Vertical access control: implementation in Symfony

01 02 03 04 05 06Advanced
Access Control

• Horizontal access controls are mechanisms that
restrict access to resources to the users who are
specifically allowed to access those resources.

• For example, a banking application will allow a

user to view transactions and make payments
from their own accounts, but not the accounts
of any other user.

Horizontal access control

01 02 03 04 05 06Advanced
Access Control

• Voters : @Security with is_granted

• You can mix the conditions, specify the status code and the message (cf. Symfony Doc.)

• Each voter will be evaluated to find the one matching your criterias

• Two methods to implement: supports() and voteOnAttribute()

• Very useful with tools that directly type your entrypoint parameters (GraphQLite)

Horizontal access control: implementation in Symfony

https://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/security.html

01 02 03 04 05 06Advanced
Access Control

Decides if the”Voter”
is the correct one
(true or false):

• Does it support
the $attribute?

• Is the $subject
correctly typed?

supports()

01 02 03 04 05 06Advanced
Access Control

• The logic that defines your specific
rule about the horizontal access
control of your $subject

• Use the TokenInterface $token to
retrieve the logged user and check
his/her access on your $subject

• Use specific code for each case
supported by your voter

voteOnAttribute()

04
Challenge your security

● Enabling 2FA on our Gitlab

● Enabling 2FA on our Google Accounts

● Audit by the Technical Direction

● Zoho Vault for password management (request an
access if you need it) (RIP the LoginMachine)

ACTIONS TAKEN TO IMPROVE THE SECURITY OF OUR TOOLS

01 02 03 04 05 06Challenge
your
security

● Update your operating system

● Update your browser

● Don’t forget to lock your computer when you don’t use it

WHAT YOU CAN DO FOR THE SECURITY AT TCM

01 02 03 04 05 06Challenge
your
security

01 02 03 04 05 06Challenge
your
security

• Client Security audit (Penetration tests...)

• Confront with OWASP Top 10

• SecurityHeaders.com

• TheCodingMachine audit by the Technical

Team (10%, 50%, post mortem)

• Be adventurous: test your own application!

https://securityheaders.com/

05
Feedback

01 02 03 04 05 06Feedback

• My first “big” project from scratch with

• Ambitious project for the client: revamp their
customer relationship management tools

• Have to deal with sensible data: personal
information, identity document, tax notice…

• GraphQLite, Symfony: discovery of the voters

Feedback

01 02 03 04 05 06Feedback

Penetration tests

• Pentests done by the IT department of the
parent company

• Some relevant security issues (XSS, GraphQLite
API exposure…)

• Some smart remarks (Time of response of the
“forgotten password” call)

• Some compliments about things operated by the
framework (Protection of the session cookie)

06
Horror Stories

01 02 03 04 05 06 Horror Stories

● Unprotected routes in configuration of the framework

● Unprotected pages in the back office

● No @Logged annotations in the whole project

● Database access from the open ports of your Docker

● Projects leaks using Git (Hi WordPress!)

● .env file commited with login information : impossible to delete it as Git stores the history

● “Script kiddies” use scripts to scan the web, find websites with known vulnerabilities and
deface them: hacked WordPress projects : keep your project dependencies up to date!

Any other “horror story” to confess ?

Horror Stories

Conclusion

● Web security concerns everyone and may have an impact on many
aspects of your application. It’s the cornerstone of every project

● The security of an application is not only a checklist but also a cursor
to adjust according to the nature of your application

● Security works in layers. Don’t hesitate to add security even if you think it
is useless (for instance strong passwords in dev environments). It might
one day save you

● Frameworks and packages implement solutions to facilitate the
implementation of security measures (Symfony voters, @Security
annotations…)

● Don’t be afraid to challenge your habits on the subject ; Don’t be afraid to
discuss about security with your client : Security implies reliability

● Every new project will be audited internally: at the start and in the
middle of the project (ask if you need to audit your ‘old’ application)

WHAT YOU NEED TO REMEMBER

Any questions?

contact@thecodingmachine.com
www.thecodingmachine.com

TheCodingMachine
56 rue de Londres - 75008 - Paris

Thank
you !

56 rue de Londres
75008 Paris

35 Rue de Marseille
69007 LYON

Rua da Palma, 219, 3ºEsq
1100-391 Lisboa

Level 15
The Lee Garden Two 28 Yun Ping Road

Causeway Bay, Hong Kong

Point du vendredi - Add on

New process, new frame

TechPoints
Peer codings noob

Objectives

➔ Follow-up / support on internship / junior team mates
technical progress

➔ Define objectives

➔ Peer Coding

➔ Transversal milestones during internship / trial period

Global Process

➔ 3 Milestones

✓ M+1 [TechPoints]

✓ M+3 [TechPoints]

✓ Pre-hiring [Global overview] new

TechPoints
Whats’ new ?

➔ New Frame (easier feedback)

➔ @DP/CdP TechPoints to be prepared d-1

➔ Now include some PM soft skills evaluation

➔ @DP/CdP Feedback to be performed afterwards
(M+3 will be included in mid-internship feedback)

Pre-hiring review

➔ Required soft skills overview

➔ PM skills discussion

➔ Main objectives for the coming months / year

